Sets in Python

In this article, we'll look at sets in Python — collections of unique elements with special properties that make them indispensable for certain tasks.

What is a set?

A set in Python is an unordered collection of unique elements. Two key properties of sets are:

  1. Unordered: elements have no specific order and are not indexed
  2. Unique: each element appears only once

Main characteristics of sets:

  • Mutability: you can add and remove elements
  • Hashing: elements must be hashable (immutable) objects
  • Efficiency: optimized for fast membership testing

Sets are based on the mathematical concept of sets, making them ideal for union, intersection, and difference operations.

Creating sets

Using curly braces

Python 3.13
# Set of integers
>>> numbers = {1, 2, 3, 4, 5}
>>> print(numbers)
{1, 2, 3, 4, 5}
# Automatic duplicate removal >>> duplicates = {1, 2, 2, 3, 3, 3, 4, 5, 5} >>> print(duplicates)
{1, 2, 3, 4, 5}
# Set with different data types >>> mixed = {1, "hello", (1, 2, 3)} >>> print(mixed)
{1, 'hello', (1, 2, 3)}

Important: You cannot create an empty set using {}, as this will create an empty dictionary. To create an empty set, use set().

Using the set() constructor

Python 3.13
# Empty set
>>> empty_set = set()
>>> print(empty_set)
set()
# Creating a set from a list >>> numbers_set = set([1, 2, 2, 3, 4, 4, 5]) >>> print(numbers_set)
{1, 2, 3, 4, 5}
# Creating a set from a string >>> letters = set("hello") >>> print(letters) # 'l' appears only once
{'h', 'e', 'l', 'o'}

Using set comprehensions

Python 3.13
# Set of squares of numbers from 0 to 9
>>> squares = {x**2 for x in range(10)}
>>> print(squares)
{0, 1, 4, 9, 16, 25, 36, 49, 64, 81}

Basic operations with sets

Checking for element presence

Python 3.13
>>> fruits = {"apple", "banana", "cherry"}

>>> print("apple" in fruits)
True
>>> print("pear" in fruits)
False

Adding and removing elements

Python 3.13
>>> fruits = {"apple", "banana"}

# Adding a single element
>>> fruits.add("cherry")
>>> print(fruits)
{'apple', 'cherry', 'banana'}
# Adding multiple elements >>> fruits.update(["pear", "orange"]) >>> print(fruits)
{'apple', 'cherry', 'banana', 'pear', 'orange'}
# Removing an element >>> fruits.remove("banana") # raises KeyError if element doesn't exist >>> print(fruits)
{'apple', 'cherry', 'pear', 'orange'}
# Safely removing an element >>> fruits.discard("cherry") # doesn't raise an error if element doesn't exist >>> print(fruits)
{'apple', 'pear', 'orange'}
# Removing and returning an arbitrary element >>> random_fruit = fruits.pop() >>> print(random_fruit)
apple
>>> print(fruits)
{'pear', 'orange'}
# Clearing the set >>> fruits.clear() >>> print(fruits)
set()

Iterating through a set

Python 3.13
>>> colors = {"red", "blue", "green"}

>>> for color in colors:
...     print(color)
red
blue
green
# The order of elements is not guaranteed!

Mathematical set operations

Union

Python 3.13
>>> a = {1, 2, 3}
>>> b = {3, 4, 5}

# With the | operator
>>> union_set = a | b
>>> print(union_set)
{1, 2, 3, 4, 5}
# With the union() method >>> union_set = a.union(b) >>> print(union_set)
{1, 2, 3, 4, 5}

Intersection

Python 3.13
>>> a = {1, 2, 3, 4}
>>> b = {3, 4, 5, 6}

# With the & operator
>>> intersection_set = a & b
>>> print(intersection_set)
{3, 4}
# With the intersection() method >>> intersection_set = a.intersection(b) >>> print(intersection_set)
{3, 4}

Difference

Python 3.13
>>> a = {1, 2, 3, 4}
>>> b = {3, 4, 5, 6}

# With the - operator
>>> difference_set = a - b
>>> print(difference_set)
{1, 2}
# With the difference() method >>> difference_set = a.difference(b) >>> print(difference_set)
{1, 2}

Comparing sets

Python 3.13
>>> a = {1, 2, 3}
>>> b = {1, 2, 3, 4, 5}
>>> c = {1, 2, 3}

# Set equality
>>> print(a == c)  # Contains the same elements
True
# Subsets >>> print(a.issubset(b)) # All elements of a are in b
True
>>> print(a < b) # a is a proper subset of b
True
# Supersets >>> print(b.issuperset(a)) # b contains all elements of a
True
>>> print(b > a) # b is a proper superset of a
True
# Checking for no common elements >>> d = {6, 7, 8} >>> print(a.isdisjoint(d)) # No common elements
True

Immutable sets (frozenset)

If you need an immutable version of a set, use frozenset:

Python 3.13
# Creating a frozenset
>>> immutable_set = frozenset([1, 2, 3, 4])
>>> print(immutable_set)
frozenset({1, 2, 3, 4})
# Attempting to modify a frozenset raises an error >>> try: ... immutable_set.add(5) ... except AttributeError as e: ... print(f"Error: {e}")
Error: 'frozenset' object has no attribute 'add'
# frozenset can be used as a dictionary key or an element of another set >>> normal_set = {frozenset([1, 2]), frozenset([3, 4])} >>> print(normal_set)
{frozenset({1, 2}), frozenset({3, 4})}

Practical examples of using sets

1. Removing duplicates from a list

Python 3.13
>>> numbers = [1, 2, 2, 3, 3, 3, 4, 5, 5]
>>> unique_numbers = list(set(numbers))
>>> print(unique_numbers)
[1, 2, 3, 4, 5]

2. Finding common elements

Python 3.13
>>> users_group1 = ["Anna", "Ivan", "Maria", "Peter", "Elena"]
>>> users_group2 = ["Ivan", "Olga", "Elena", "Alex"]

# Common elements (intersection)
>>> common_users = set(users_group1) & set(users_group2)
>>> print(f"Users in both groups: {common_users}")
Users in both groups: {'Elena', 'Ivan'}
# Elements only in the first group (difference) >>> only_group1 = set(users_group1) - set(users_group2) >>> print(f"Only in group 1: {only_group1}")
Only in group 1: {'Maria', 'Anna', 'Peter'}
# All unique elements (union) >>> all_users = set(users_group1) | set(users_group2) >>> print(f"All unique users: {all_users}")
All unique users: {'Elena', 'Ivan', 'Maria', 'Anna', 'Olga', 'Alex', 'Peter'}

3. Checking for uniqueness of elements

Python 3.13
>>> def are_all_unique(items):
...     """Checks if all elements in a sequence are unique."""
...     return len(set(items)) == len(items)

>>> print(are_all_unique([1, 2, 3, 4, 5]))
True
>>> print(are_all_unique([1, 2, 3, 3, 4]))
False

Limitations and performance

Limitations

Set elements must be hashable (immutable):

Python 3.13
# Works with immutable data types
>>> valid_set = {1, "hello", (1, 2, 3)}
>>> print(valid_set)
{1, 'hello', (1, 2, 3)}
# Error with mutable data types >>> try: ... invalid_set = {1, [2, 3], {"a": 1}} ... except TypeError as e: ... print(f"Error: {e}")
Error: unhashable type: 'list'

You can add:

  • Numbers (int, float, complex)
  • Strings (str)
  • Tuples (tuple) with hashable elements
  • Frozenset

You cannot add:

  • Lists (list)
  • Dictionaries (dict)
  • Sets (set)

Performance

Sets are optimized for fast operations:

Python 3.13
>>> import time

# Speed comparison (demonstration)
>>> data = list(range(10000))
>>> data_set = set(data)

# Search in list vs. search in set
>>> start = time.time()
>>> 9999 in data  # Slow: O(n)
>>> list_time = time.time() - start

>>> start = time.time()
>>> 9999 in data_set  # Fast: O(1)
>>> set_time = time.time() - start

>>> print(f"Search in list: {list_time:.6f} sec")
>>> print(f"Search in set: {set_time:.6f} sec")
>>> print(f"Set is {list_time/set_time:.1f} times faster")
Search in list: 0.000248 sec
Search in set: 0.000003 sec
Set is 82.7 times faster

Operations with O(1) complexity (constant time):

  • Testing for membership: x in set
  • Adding an element: set.add(x)
  • Removing an element: set.remove(x), set.discard(x)

We are in touch with you
English