Dictionaries in Python

In this article, we'll explore dictionaries (dict) — one of the most powerful and flexible data types in Python.

What is a Dictionary?

A dictionary in Python is a collection of key-value pairs. You can think of a dictionary as a phone book, where people's names (keys) are associated with their phone numbers (values).

Main properties of dictionaries:

  • Keys must be unique — you cannot have two identical keys in one dictionary
  • Keys must be immutable — you can use strings, numbers, tuples as keys, but not lists or dictionaries
  • Values can be of any type — numbers, strings, lists, other dictionaries, etc.
  • Starting from Python 3.7, dictionaries preserve the order of adding elements (previously order was not guaranteed)

Creating Dictionaries

There are several ways to create a dictionary in Python:

1. Using curly braces

Python 3.13
# Empty dictionary
>>> empty_dict = {}

# Dictionary with data
>>> person = {"name": "John", "age": 30, "city": "New York"}
>>> print(person)
{'name': 'John', 'age': 30, 'city': 'New York'}
# Nested dictionaries >>> nested = { ... "person": {"name": "Mary", "age": 25}, ... "contacts": {"email": "mary@example.com", "phone": "+1234567890"} ... } ... print(nested["person"])
{'name': 'Mary', 'age': 25}

2. Using the dict() constructor

Python 3.13
# Empty dictionary
>>> empty_dict = dict()

# From a list of tuples (key-value pairs)
>>> pairs = [("name", "Anna"), ("age", 28), ("city", "Berlin")]
>>> person = dict(pairs)
>>> print(person)
{'name': 'Anna', 'age': 28, 'city': 'Berlin'}
# Using keyword arguments (only for string keys) >>> settings = dict(theme="dark", font_size=12, notifications=True) >>> print(settings)
{'theme': 'dark', 'font_size': 12, 'notifications': True}

3. Dictionary comprehensions

Python 3.13
# Dictionary of squares (number: square of number)
>>> squares = {x: x**2 for x in range(1, 6)}
>>> print(squares)
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

4. The fromkeys() method for creating a dictionary with identical values

Python 3.13
# Creating a dictionary with given keys and the same value for all
>>> keys = ["name", "age", "city"]
>>> defaults = dict.fromkeys(keys, None)
>>> print(defaults)
{'name': None, 'age': None, 'city': None}

Accessing Dictionary Elements

Access to values in a dictionary is done through keys:

Accessing by key

Python 3.13
>>> person = {"name": "John", "age": 30, "city": "New York"}

# Getting a value by key
>>> name = person["name"]
>>> print(name)
John
# Safe way using the get() method >>> phone = person.get("phone") # Returns None if the key doesn't exist >>> print(phone)
None
# The get() method with a default value >>> phone = person.get("phone", "Not specified") >>> print(phone)
Not specified

Checking if a key exists

Python 3.13
>>> person = {"name": "John", "age": 30, "city": "New York"}

# Checking if a key exists
>>> print("name" in person)
True
>>> print("phone" not in person)
True

Accessing nested dictionaries

Python 3.13
>>> nested = {
...     "person": {"name": "Mary", "age": 25},
...     "contacts": {"email": "mary@example.com", "phone": "+1234567890"}
... }

# Accessing values in nested dictionaries
>>> name = nested["person"]["name"]
>>> print(name)
Mary
# Safe access using get() >>> email = nested.get("contacts", {}).get("email") >>> print(email)
mary@example.com
# If the path doesn't exist, None or a default value is returned >>> website = nested.get("contacts", {}).get("website", "Not specified") >>> print(website)
Not specified

Modifying Dictionaries

Dictionaries in Python are mutable, so they can be easily modified:

Adding and changing elements

Python 3.13
# Creating a dictionary
>>> person = {"name": "John", "age": 30}

# Adding a new key and value
>>> person["city"] = "New York"
>>> print(person)
{'name': 'John', 'age': 30, 'city': 'New York'}
# Changing the value of an existing key >>> person["age"] = 31 >>> print(person)
{'name': 'John', 'age': 31, 'city': 'New York'}
# Using the update() method for bulk updates >>> person.update({"age": 32, "job": "developer", "language": "Python"}) >>> print(person)
{'name': 'John', 'age': 32, 'city': 'New York', 'job': 'developer', 'language': 'Python'}

Removing elements

Python 3.13
>>> person = {"name": "John", "age": 30, "city": "New York", "job": "developer"}

# Removing an element by key using del
>>> del person["job"]
>>> print(person)
{'name': 'John', 'age': 30, 'city': 'New York'}
# Removing and returning an element using pop() >>> age = person.pop("age") >>> print(age)
30
>>> print(person)
{'name': 'John', 'city': 'New York'}
# pop() with a default value (doesn't raise an error if the key doesn't exist) >>> job = person.pop("job", "Not specified") >>> print(job)
Not specified
# Removing and returning an arbitrary element using popitem() # In Python 3.7+ returns the last added element >>> item = person.popitem() >>> print(item)
('city', 'New York')
>>> print(person)
{'name': 'John'}
# Removing all elements >>> person.clear() >>> print(person)
{}

Dictionary Methods

Python provides many useful methods for working with dictionaries:

Getting keys, values, and key-value pairs

Python 3.13
>>> person = {"name": "John", "age": 30, "city": "New York"}

# Getting all keys
>>> keys = person.keys()
>>> print(keys)
dict_keys(['name', 'age', 'city'])
# Getting all values >>> values = person.values() >>> print(values)
dict_values(['John', 30, 'New York'])
# Getting all key-value pairs >>> items = person.items() >>> print(items)
dict_items([('name', 'John'), ('age', 30), ('city', 'New York')])
# The objects dict_keys, dict_values and dict_items are dictionary views # They dynamically reflect changes in the dictionary >>> person["job"] = "developer" >>> print(keys)
dict_keys(['name', 'age', 'city', 'job'])
# Converting views to lists >>> keys_list = list(keys) >>> print(keys_list)
['name', 'age', 'city', 'job']

Copying dictionaries

Python 3.13
>>> import copy

# Dictionary with a nested structure
>>> original = {"name": "John", "settings": {"theme": "dark"}}

# Shallow and deep copies
>>> shallow_copy = original.copy()
>>> deep_copy = copy.deepcopy(original)

# Changing a simple key works the same in both cases
>>> shallow_copy["name"] = "Peter"
>>> deep_copy["name"] = "Alice"
>>> print(f"original['name']: {original['name']}")  # Remains John
original['name']: John
# Differences appear when changing nested structures >>> shallow_copy["settings"]["theme"] = "light" >>> print(f"After shallow copy - original['settings']['theme']: {original['settings']['theme']}") # Changes!
After shallow copy - original['settings']['theme']: light
# Create a new original to demonstrate deep copy >>> original = {"name": "John", "settings": {"theme": "dark"}} >>> deep_copy = copy.deepcopy(original) >>> deep_copy["settings"]["theme"] = "light" >>> print(f"After deep copy - original['settings']['theme']: {original['settings']['theme']}") # Doesn't change
After deep copy - original['settings']['theme']: dark

Merging dictionaries

Python 3.13
# Merging dictionaries with update
>>> dict1 = {"a": 1, "b": 2}
>>> dict2 = {"b": 3, "c": 4}

# Create a copy of dict1 and update it with data from dict2
>>> merged = dict1.copy()
>>> merged.update(dict2)
>>> print(merged)
{'a': 1, 'b': 3, 'c': 4}
# In Python 3.9+ you can use the | operator # merged = dict1 | dict2

Setting a default value

Python 3.13
# Counting word frequency
>>> counts = {}
>>> text = "one two one two three"
>>> words = text.split()

# Method 1: checking if the key exists
>>> for word in words:
...     if word in counts:
...         counts[word] += 1
...     else:
...         counts[word] = 1
... print(counts)
{'one': 2, 'two': 2, 'three': 1}
# Method 2: using get() >>> counts = {} >>> for word in words: ... counts[word] = counts.get(word, 0) + 1 ... print(counts)
{'one': 2, 'two': 2, 'three': 1}

Iterating Through Dictionaries

There are several ways to iterate through dictionary elements:

Python 3.13
>>> person = {"name": "John", "age": 30, "city": "New York"}

# Iterating through keys (default method)
>>> print("Iterating through keys:")
>>> for key in person:
...     print(key, ":", person[key])
Iterating through keys:
name : John
age : 30
city : New York
# Iterating through values >>> print("Iterating through values:") >>> for value in person.values(): ... print(value)
Iterating through values:
John
30
New York
# Iterating through key-value pairs >>> print("Iterating through key-value pairs:") >>> for key, value in person.items(): ... print(key, ":", value)
Iterating through key-value pairs:
name : John
age : 30
city : New York

We are in touch with you
English